Measurements of 4He in Metal-Poor Extragalactic H II Regions: Yp and the  $\Delta Y/\Delta O$  Ratio

### M. Peimbert Instituto de Astronomía Universidad Nacional Autónoma de México

A. Peimbert
L. Carigi
V. Luridiana

Geneva, November 2009

### Outline

- Recent Yp determinations
- Comparison of the directly determined Yp with those Yp values derived under the assumption of SBBN and WMAP
- Recent  $\Delta Y / \Delta O$  determinations
- Comparison of Yp and ΔY/ΔO with models of Galactic chemical evolution
- Conclusions

### Why Y<sub>P</sub>?

- Y<sub>P</sub> and Big Bang Cosmology
- Y<sub>P</sub> and the Standard Model of BBN
- Y<sub>P</sub> and Physical Conditions in H II Regions
- Y<sub>P</sub> and the Chemical Evolution of Galaxies

Recent results by Izotov et al. 2007 and Peimbert et al. 2007



| Source                                      | Systematic | Statistical |
|---------------------------------------------|------------|-------------|
|                                             | Error      | Error       |
| Fluorescent Excitation of HI and HeI Lines  |            |             |
| Collisional Excitation of the HI Lines      |            |             |
| Temperature Structure                       |            |             |
| O (∆Y/∆O) Correction                        |            |             |
| Recombination Coefficients of the HeI Lines |            |             |
| Density Structure                           |            |             |
| Underlying Absorption in the HeI Lines      |            |             |
| Reddening correction                        |            |             |
| Recombination Coefficients of the HI Lines  |            |             |
| Underlying Absorption in the HI Lines       |            |             |
| Ionization Structure                        |            |             |
| Collisional Excitation of the HeI Lines     |            |             |
| Optical Depth of the HeI Triplet Lines      |            |             |
| HeI and HI Line Intensities                 |            |             |

### Collisional Excitation of the H I lines

≻Davidson & Kinman (1985).

Stasinska & Izotov (2001).

Luridiana, Peimbert, & Peimbert (2003).

Peimbert, Luridiana, & Peimbert (2007).

•This is one of the two least studied problems related to the  $Y_P$  determination (the other is case D). •It requires tailor-made models for each object. •Notice that simple photoionization models predict electron temperatures smaller than observed. •It is extremely sensitive to temperature. •It is very important for objects with T(O | I )> 14 000K. •It is negligible for objects with T(O | I )> 12000K. T(O | I )

T(O II)I(Hβ)15 500 K5-7%14 000 K2-3%12 000 K0.5-1%

#### **CLOUDY** photoionization model for NGC 346



### **Temperature Structure**

$$T_0 = \frac{\int T_e n_e n_i dV}{\int n_e n_i dV}$$

$$t^{2} = \frac{\int (T_{e} - T_{\theta})^{2} n_{e} n_{i} dV}{T_{\theta}^{2} \int n_{e} n_{i} dV}$$

$$\begin{split} T_e(4363/5007) &= T_\theta \left[ 1 + (90800/T_\theta - 3) t^2 / 2 \right] \\ T_e(\text{Bac/H}\beta) &= T_\theta \left( 1 - 1.70 t^2 \right) \\ T_e(4649/5007) &= f_1(T_\theta, t^2) \end{split}$$

### Using He I Lines to Determine Physical Conditions

• The intensity of each He I is:

### 

- In principle, with 4 He I line intensities relative to *I*(Hβ) it is possible to derive 4 unknowns: *T*<sub>e</sub> (He I), *n*<sub>e</sub>(He I), *τ*<sub>(3889)</sub>, and He<sup>+</sup>/H<sup>+</sup>.
- In practice, this works better using 8+ lines, with s/n up to 50+

### The Y<sub>P</sub> Determination Error Budget (For the Deimbert et al

Error Budget (For the Peimbert et al. 2007 sample)

| Source                                      | Error   | <b>S</b>   |
|---------------------------------------------|---------|------------|
| Collisional Excitation of the HI Lines      | ±0.0015 | → <b>ö</b> |
| Temperature Structure                       | ±0.0010 |            |
| Ο (ΔΥ/ΔΟ) Correction                        | ±0.0010 |            |
| Recombination Coefficients of the HeI Lines | ±0.0010 |            |
| Density Structure                           | ±0.0007 | 5          |
| Underlying Absorption in the HeI Lines      | ±0.0007 | <b>E</b>   |
| Reddening correction                        | ±0.0007 | → <u>3</u> |
| Recombination Coefficients of the HI Lines  | ±0.0005 |            |
| Underlying Absorption in the HI Lines       | ±0.0005 | S S        |
| Ionization Structure                        | ±0.0005 |            |
| Collisional Excitation of the HeI Lines     | ±0.0005 |            |
| Optical Depth of the He I Triplet Lines     | ±0.0005 |            |
| He I and H I Line Intensities               | ±0.0005 |            |

### Determination of the Primordial Helium Abundance, $Y_P$ , with $t^2 = 0.000$ and $t^2 \neq 0.000$

|              | ∆Y (Hc)         | <b>Y</b><br>( <i>t</i> <sup>2</sup> = 0.000) | <b>Y</b><br>( <i>t</i> <sup>2</sup> ≠ 0.000) | <b>Y</b> <sub>P</sub><br>(t <sup>2</sup> ≠ 0.000) |
|--------------|-----------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------|
| NGC 346      | 0.0015 ± 0.0005 | 0.2537                                       | 0.2507 ± 0.0027 ± 0.0015                     | 0.2453 ± 0.0027 ± 0.0019                          |
| NGC 2363     | 0.0057 ± 0.0016 | 0.2551                                       | 0.2518 ± 0.0047 ± 0.0020                     | 0.2476 ± 0.0047 ± 0.0022                          |
| Haro 29      | 0.0047 ± 0.0013 | 0.2577                                       | 0.2535 ± 0.0045 ± 0.0017                     | 0.2500 ± 0.0045 ± 0.0019                          |
| SBS 0335-052 | 0.0144 ± 0.0038 | 0.2594                                       | 0.2533 ± 0.0042 ± 0.0042                     | 0.2520 ± 0.0042 ± 0.0042                          |
| I Zw 18      | 0.0114 ± 0.0031 | 0.2529                                       | 0.2505 ± 0.0081 ± 0.0033                     | 0.2498 ± 0.0081 ± 0.0033                          |
| Y(sample)    | 0.0056 ± 0.0015 | 0.2554                                       | 0.2517 ± 0.0018 ± 0.0021                     | 0.2477 ± 0.0018 ± 0.0023                          |

$$\mathbf{Y}_{P} = \mathbf{Y} - \mathbf{O}(\triangle \mathbf{Y} / \triangle \mathbf{O})$$

Peimbert et al. 2007

## The $Y_P$ Determination $Y_P$ , $D_P$ , and WMAP Comparison

#### **Cosmological predictions based on SBBN and observations** For $\tau n = 885.7 \pm 0.8 s$

| Method         | Y <sub>P</sub>   | $D_P \times 10^5$ | $oldsymbol{\eta}_{10}$ | ${oldsymbol{\varOmega}}_b h^2$ |
|----------------|------------------|-------------------|------------------------|--------------------------------|
| Y <sub>P</sub> | 0.2477 ± 0.0029* | 2.78 +2.28 -0.98  | 5.813 ± 1.810          | 0.02122 ± 0.00663              |
| D <sub>P</sub> | 0.2476 ± 0.0006  | 2.82 ± 0.28*      | 5.764 ± 0.360          | 0.02104 ± 0.00132              |
| WMAP           | 0.2484 ± 0.0003  | 2.49 ± 0.11       | 6.225 ± 0.170          | 0.02273 ± 0.00082*             |

**\*Observed values** 

Peimbert 2008

## The $Y_P$ Determination $Y_P$ , $D_P$ , and WMAP Comparison

**Cosmological predictions based on SBBN and observations** for  $\tau n = 878.5 \pm 0.8 s$ 

| Method         | Y <sub>P</sub>   | $D_P \times 10^5$           | $oldsymbol{\eta}_{10}$ | ${oldsymbol{\varOmega}}_b h^2$ |
|----------------|------------------|-----------------------------|------------------------|--------------------------------|
| Y <sub>P</sub> | 0.2477 ± 0.0029* | 1.86 <sup>+2.28</sup> -0.98 | 6.937 ± 1.810          | 0.02532 ± 0.00663              |
| D <sub>P</sub> | 0.2458 ± 0.0006  | 2.82 ± 0.28*                | 5.764 ± 0.360          | 0.02104 ± 0.00132              |
| WMAP           | 0.2466 ± 0.0003  | 2.49 ± 0.11                 | 6.225 ± 0.170          | 0.02273 ± 0.00062*             |

**\*Observed values** 

Peimbert 2008

### Neutron lifetime and Yp

| τn                           | Y <sub>P</sub> |
|------------------------------|----------------|
| 885.7 ± 0.8 s ª              | 0.2484         |
| 881.9 ± 1.6 s <sup>a,b</sup> | 0.2475         |
| 875.8 ± 0.8 s <sup>b</sup>   | 0.2468         |

a) Arzumanov et al. (2000)b) Serebrov et al. (2005, 2008)

### Primordial Helium Abundance: HII Regions

| $(T(4363/5007); t^2=0.00)$                           |                 |
|------------------------------------------------------|-----------------|
| Izotov et al. 2007                                   | 0.2533 ± 0.0011 |
| ( <i>T</i> (5007/4363); <i>t</i> <sup>2</sup> =0.00) |                 |
| Peimbert et al. 2007                                 | 0.2523 ± 0.0027 |
| Observational <i>t</i> <sup>2</sup> Method           |                 |
| (Balmer continuum and He I lines with MLM)           |                 |
| Peimbert et al. 2007                                 | 0.2477 ± 0.0029 |
| Primordial Deuterium + SBBN                          |                 |
| O'Meara et al. 2006                                  | 0.2476 ± 0.0006 |
| Wilkinson Microwave Anisotropy Probe + SBBN          |                 |
| WMAP 2008                                            | 0.2484 ± 0.0003 |

### Yp for a given t<sup>2</sup>

|                        | t <sup>2</sup> | Y <sub>P</sub> |            |
|------------------------|----------------|----------------|------------|
| Peimbert et al. (2007) | 0.01           | 0.2505         | 5 objects  |
| Izotov et al. (2007)   | 0.01           | 0.2516         | 86 objects |
| Izotov et al. (2009)   | 0.01           | 0.2514         | 2 objects  |

### $\Delta Y / \Delta O$

| Observations      |        | Irregulars  | The Galaxy  |
|-------------------|--------|-------------|-------------|
| Carigi et al.     | (1995) | 4.5 ± 1.0   | •••         |
| Peimbert A.       | (2003) | 2.93 ± 0.85 | 3.57 ± 0.67 |
| Izotov & Thuan    | (2004) | 4.3 ± 0.7   |             |
| Peimbert et al.   | (2006) | 3.4 ± 0.7   |             |
| Models            |        | Irregulars  | The Galaxy  |
| Carigi et al.     | (1995) | 2.95        |             |
| Chiappini et al.  | (1997) |             | 3.15        |
| Carigi et al.     | (1999) | 4.2         |             |
| Carigi & Peimbert | (2007) | 2.4-4.0     | 3.3-4.0     |

 $\Delta Y / \Delta O = 3.3 \pm 0.7$  $Y_P = Y - O(\Delta Y / \Delta O)$ 

Irregulars: closed box models and outflow models of well mixed material. For O-rich outflows the models enter in contradiction with observed C/O values.

Galaxy: two infall models with an inside-out formation scenario





### Summary 1/2

- The use of *T*(HeI) instead of *T*(4363/5007) reduces *Yp* by ~ 0.0046.
- The total increase in Yp due to H I collisions amounts to ~ 0.0030.
- The total increase in Yp due to the new He I atomic physics computations amounts to ~ 0.0040.
- The  $\Delta Y / \Delta O$  adopted value is  $3.3 \pm 0.7$
- The derived Yp value is 0.2477 ± 0.0029 (without considering case D)

### Summary 2/2

- The Yp derived from H II regions is in good agreement with the Yp derived from the Dp and WMAP measurements assuming SBBN. There is still some room for the possibility of new physics.
- There are Galactic chemical evolution models that adjust the observed O/H ISM values and the O/H abundance gradient. These models also adjust the C/O observed abundance gradient.
- These models are also in good agreement with the Yp and the Y and O presolar and M17 values.
- Models of nearby low metallicity galaxies predict constant  $\Delta Y / \Delta O$  ratios.

# THE END